PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

FAULT DETECTION IN PHOTOVOLTAIC ARRAYS: A ROBUST REGULARIZED MACHINE LEARNING APPROACH

 |    : /

NOVEMBER 2020   -  Volume: 95 -  Pages: 622-628

DOI:

https://doi.org/10.6036/9856

Authors:

HEYBET KILIC - MUSA YILMAZ - BILAL GUMUS

Disciplines:

  • Construction technology (TECNOLOGÍA DEL HORMIGÓN )

Downloads:   16

How to cite this paper:  

Received Date :   15 July 2020

Reviewing Date :   16 July 2020

Accepted Date :   14 October 2020

Interested in this item? You can purchase the item through the payment platform PayPal or credit card (VISA, MasterCard, ...) for 20 €.


Key words:
Canonical correlation analysis, fault detection, photovoltaic array, random vector-link network, sparse regularization
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

In this paper, a robust data-driven method for fault detection in photovoltaic (PV) arrays is proposed. Our method is based on the random vector functional link networks (RVFLN) which has the advantage of randomly assigning hidden layer parameters with no tuning. To eliminate the effect of measurement noise and overfitting in the training process which reduce the fault detection accuracy, the sparse-regularization method is utilized which uses l2-norm with loss weighting factor to compute the output weights. To attain strong robustness against the outlier samples, the non-parametric kernel density estimation is employed to assign a loss weighting factor. Through rigorous simulation and experimental studies, we validate the performance of our proposed method in detecting the short and open circuit faults based on only the output current and voltage measurements of PV arrays. In addition to stronger robustness comparing with the least square-support vector machine, we also show that our proposed method provides 80% and 100% average detection accuracy for short circuit and open circuit, respectively.

Key Words: Canonical correlation analysis, fault detection, photovoltaic array, random vector-link network, sparse regularization

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...