PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

EVENT-TRIGGERED CONTROL OF MILLING PHOTOELECTRIC TRACKING SERVO SYSTEMS BASED ON MULTI-INNOVATION INTEREST PARAMETER IDENTIFICATION

 |    : /

SEPTEMBER 2024   -  Volume: 99 -  Pages: 538-546

DOI:

https://doi.org/10.52152/D11193

Authors:

JIE YANG
- WEIWEI FAN - KE XU - CHUANSHENG TANG

Disciplines:

  • Electrical technology and engineering (MOTORES ELECTRICOS )

Downloads:   26

How to cite this paper:  
Download pdf

Download pdf

Received Date :   13 February 2024

Reviewing Date :   13 February 2024

Accepted Date :   13 May 2024


Key words:
Event-triggered control, Multiple innovative parameter identification, Multiverse optimization PI, Optoelectronic tracking servo system
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

Given the coupling of speed and current and the nonlinearity of electronic devices, the photoelectric tracking servo system for milling machines make it difficult to determine the model parameters, and traditional proportional–integral (PI) control hardly meets the high-performance requirements of milling machine optoelectronic tracking servo systems, especially in the development of system networking. In this study, an event-triggered intelligent PI position control strategy based on a multi-innovation identification model was proposed to improve the low control accuracy and dynamic performance caused by the strong coupling and nonlinearity in the optoelectronic tracking servo system of computerized numerical control (CNC) milling machines. A discredite model of the system was established through a multi-innovation identification model, and the PI control parameter was quickly determined using an improved multiverse optimization (IMVO) algorithm. At the same time, an event-triggering mechanism was introduced, thus reducing the number of controller triggers and saving system resources while ensuring the dynamic performance of the system. Finally, experiment results were compared with typical second-order system engineering design PI (SSED-PI) control, pole placement PI (PP-PI) control, and multiverse optimization (MVO)-PI control. Results demonstrate that the proposed multi-innovation stochastic gradient identification model fully utilizes the historical turning angle information of the optoelectronic tracking servo system and has higher accuracy than traditional stochastic gradient identification (parameter accuracy improved by 6.9 times, quantization error reduced by 6.7 times). The proposed event-triggered IMVO-PI (ET-IMVO-PI) has a triggering frequency of 3.5% compared with time-triggered IMVO-PI, with an overshoot of less than 0.5%, which can meet the needs of most engineering practices (less than 5%). Compared with event-triggered SSED-PI, PP-PI, and IMVO-PI, ET-IMVO-PI has higher dynamic performance and fewer triggering times, which can effectively meet the requirements of high-performance network control. The proposed method serves a crucial theoretical guide and important reference for the upgrading and transformation of the photoelectric tracking servo system of CNC milling machines.

Keywords: Event-triggered control, Multiple innovative parameter identification, Multiverse optimization PI, Optoelectronic tracking servo system

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...